Some Pitfalls in Smooth Transition Models Estimation: A Monte Carlo Study∗ (preliminary, do not quote)

نویسنده

  • N. Maugeri
چکیده

Nonlinear Regime Switching models are becoming increasingly popular in recent applied literature, as they allow capturing state-dependent behaviors which would be otherwise impossible to model. However, despite their popularity, the specification and estimation of these type of models is computationally complex and it is far from being a univocally solved issue. This paper aims at contributing to this debate. In particular, we use Monte Carlo experiments to assess whether employing the standard trick of ‘Concentrating the Sum of Squares’ (Leybourne, Newbold and Vaugas, 1998) in the application of Nonlinear Least Squares to Smooth Transition models yields estimates with desirable asymptotic properties. Our results confirm that this procedure needs to be used with caution as it may yield biased and inconsistent estimates, especially when faced with small samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

Monte Carlo Simulations of the Nested Fixed-point Algorithm

There have been substantial advances in dynamic structural models and in the econometric literature about techniques to estimate those models over the past two decades. One area in which these new developments has lagged is in studying robustness to distributional assumptions and finite sample properties in small samples. This paper extends our understanding of the behavior of these estimation ...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange

This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...

متن کامل

A New Methodology for Frequency Estimation of Second or Higher Level Domino Accidents in Chemical and Petrochemical Plants Using Monte Carlo Simulation

Some of the most destructive accidents of 1980s and 90s which occurred in process industries were domino accidents. Although domino accidents are among the most destructive industrial accidents, there are not much pioneering works done on quantification of them. The analytical formulation of the domino accidents is usually complex and need a deep knowledge of probability rules. Even if the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012